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The swelling of a polymer network in a good solvent and of the collapse of this sample in a poor solvent 
is discussed theoretically for networks prepared in the presence of a large amount of diluent. The 
notation used is convenient for comparison with the theory of the swelling and collapse of a single 
macromolecule. The reference state for the networks under consideration must be chosen near the 0 
temperature for the corresponding linear macromolecule. For a free network and a network with fixed 
dimensions along one or two axes we obtain asymptotic results for the swelling of the network in a 
good solvent; these do not coincide with the classical Flory results. Results for the collapse of the 
network, which takes place upon cooling below the O-point are also obtained. The collapse can occur either 
as a discrete first order phase transition (if the network chains are stiff or if it is stretched along one 
or two axes), or as a continuous non-phase transition (located in a narrow temperature range). 

INTRODUCTION 

Considerable attention has been paid recently to the 
experimental investigation of the influence of volume 
interactions on polymer network properties 1-9 (for a the- 
oretical introduction to this field see ref 10). In particular, 
the study of the conformational behaviour of the network 
sample surrounded by an excess of solvent, i.e. swelling in 
the good solvent and collapse in the poor solvent has attrac- 
ted investigation 1'2'7' lO. 

The theory of the swelling and collapse of a single poly- 
mer macromolecule surrounded by the solvent has now been 
fundamentally constructed (see review, ref 11). The aim of 
this article is to apply the methods and the terminology of 
this theory to the problem of the swelling and collapse of 
the polymer networks. We shall consider only networks 
prepared in the presence of a large amount of diluent; thus 
crosslinked networks prepared in the dry state are beyond 
the scope of this paper. 

In order to ensure direct analogies with the case of a 
single macromolecule, we shall use a system of network 
parameters which is somewhat different from that com- 
monly used 1°. The author believes that this system of para- 
meters is the most natural one for a polymer network. 

Let the network polymer chains be the persistent chains 
of width d and of persistent length l. We denote a portion 
of the chain of length ~d, as the 'monomer'. Let m >> 1 be 
the average number of monomers in the chain between two 
nearest neighbour branch points, and let N be the total 
number of monomers in the network. We shall assume that 
the monomers interact with a second virial coefficient B 
and a third virial coefficient C (more exactly, we should use 
the effective virial coefficients B* and C* renormalized due 
to the connectivity of monomers in the chainl2; we shall 
imply that such a renormalization is already performed). 
For a network with a small average monomer concentration 
n within a network, the free energy Fin t of the volume inter- 
action of the monomers is: 

Fin t = NTBn + NTCn 2 (1) 

where Tis the temperature (the Boltzmann constant is taken 
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to be unity here and below). In the case of network swelling, 
it will be enough to take into account only the first term in 
expression (1); the term incorporating the third virial coef- 
ficient Cwill be important in the theory for the collapse of 
the network. Accounting for the next terms in the virial 
expansion is not necessary, since, as will be seen from the 
final results, at m >> 1 the average monomer concentration 
within the network is small in all the situations under study 
in this paper - compare with ref 11. 

We also assume that the functionality of the branch 
points is not high (f= 3 ~ 4). In this case, as shown in refs 
3 and 4 for a swelling network in good or 0 solvents, the 
degree of interpenetration of the coils formed by different 
network chains is small (in other words, the so-called 
Ziabicki factor 13 is close to unity). Therefore the average 
monomer concentration within the network is of the same 
order of magnitude as the average monomer concentration 
within a polymeric coil ofm monomers. 

Finally, we shall use the traditional assumption that the 
network chains deform affinely together with the macro- 
scopic sample. The existence of enormous numbers of top- 
ological restrictions on the possible deformations of the 
network chains makes impossible any essential deviation 
from affinity. 

FREE ENERGY OF THE NETWORK 

The problem of accounting for volume interactions in a 
polymer network prepared in the presence of diluent is in 
one respect more simple than the corresponding problem for 
a single linear macromolecule. This results from the pos- 
sibility of neglecting the surface free energy terms for a 
macroscopic sample. Consequently, the free energy of a 
polymer network can be represented as the sum of Fin t (see 
expression 1) and Feb the free energy of elastic deformation 
for the network. (It must be recalled that in the case of a 
single macromolecule the surface free energy F s mu~t be 
taken into account as well, and that the swelling of the 
macromolecule can be described by the interplay of Fin t 
and Fel, whereas its collapse is described by the interplay of 
Fin t and Eft1.) 



F igu re  1 Typical conformat ion  o f  the chain between two nearest 
neighbour branch points in the collapsed state. Due to the a f f in i ty  
principle the average distance between the ends of this chain is R ~ 
m 1/3. The chain itself, being situated in the concentrated solut ion o f  
other chains, obeys Gaussian statistics; its average spatial dimensions 
L ~ m 1/2. Thus in the typical conformat ion  R < L. 

Volume interactions in the polymer network prepared in 
the presence of  diluent can also lead to a problem which is 
more complex compared with a single macromolecule. This 
becomes apparent when considering Fel, which may be 
expressed by the familiar 1'1° Flory form: 

+~y +a z - 3  9 
Fel = vT - ln(axayaz) (2) 

2 

where: v is the number of  elastically effective network 
chains; and ax, ay and az are the deformation ratios of  the 
network along Ox, Oy and Oz with respect to a hypothetical 
reference state, in which all the network chains are Gaussian 
coils unperturbed by volume interactions. In the case of  a 
single macromolecule such a reference state is realized at the 
0 temperature; for a polymer network prepared by cross- 
linking in the absence of  diluent the dry state acts as a 
reference state, since polymer chains exhibit Gaussian statis- 
tics in the bulk. This was used by Flory 14 in his classical 
theory of elastic deformation and swelling. 

However, when a large amount of  diluent is present, the 
state which corresponds to the complete absence of  volume 
interactions cannot be realized. Indeed, it is easy to 
show ls'16, that in the absence of  volume interactions the 
monomer concentration within the network tends to 
infinity when N-+ oo. Naturally this is never the case under 
real conditions. Thus it is never possible to neglect com- 
pletely the role of the volume interactions in the polymer 
network; the chains are never strictly Gaussian, and thus the 
reference state can be chosen only approximately. In this 
state the conformation of  the network chains must be most 
close to the conformation of  unperturbed Gau',sian coils. 
It should be emphasized that equation (2) is therefore 
approximate for this case and thus, strictly speaking, the 
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results obtained based on this formula should be valid only 
in orders of magnitude. 

It is clear from the discussion above that the reference 
state for the polymer network under consideration must be 
chosen somewhere near the 0 temperature for the corres- 
ponding linear macromolecule. In this case the conforma- 
tion of the network chains is closest to the unperturbed con- 
formation: in the good solvent the network chains swell 
with respect to their unperturbed dimensions;below the 
0-temperature (see below) the collapse of  the network 
occurs, and due to the affinity principle the network chains 
take-up the 'contracted' conformation of  the type shown 
inFigure 1 (see the caption to Figure 1)*. 

The average monomer concentration n o within the net- 
work in the reference state is of the same order of  magni- 
tude as the average monomer concentration within the 
polymeric coil of m monomers at the 0 temperature (see 
Introduction), i.e.17: 

n o = k ml/2p3/2d3 (2) 

where p = l/d, and k is the parameter of  order unity. 
Formulae (1) (3) determine completely the free energy of a 
polymer network. The more exact assignment of  the 
reference state (i.e. the calculation of the parameter k) is 
not justified owing to inaccuracy of the theory. The para- 
meter k must be regarded as the phenomenological adjust- 
able parameter of order unity, which depends on the 
details of  the network structure. 

The definition of the reference state (the 0 state of a 
polymer network?) differs considerably from that used in 
the Flory theory ~4 (the dry network in the absence of 
diluent). Our definition is valid for the networks prepared 
in the presence of a large amount of diluent. Indeed, in 
this latter rose the dry network is to a large extent collap- 
sed; thvJ the network chains adopt the supercoiled confor- 
matien (in the terminology of ref 10) shown in Figure 1 
and the choice of  this state as the reference state is not 
correct. 

It must be noted that in some papers (see the review, ref 
10), the reference state was identified with the state of  the 
network under the formation conditions. However, it is 
physically clear that the conditions of  formation affect the 
network properties only indirectly through the network 
parameters (v, k and m), but not directly (this was confir- 
med experimentally in ref 4), and thus bear no relation to 
the reference state. 

The free energy of a polymer network F = Fin t + Fel in 
our notation may now be written as follows for the three 
cases below. 

(a) Free swelling or collapse of the network: ~x = O~y = 
% ~ c~; n = n0/o~ 3, thus 

F = 3vT In (4) a + N T i s -  + f a6 l 

(b) free swelling or collapse along the axes Ox and Oy 

* It must be noted that this definition of  the reference state seems 
to coincide with one implicitly adopted in ref 7. 
t Although we have shown that the reference state must be chosen 
somewhere near the 0 temperature for the corresponding linear 
macromolecule (this 'inaccurate' statement is sufficient to write 
n o in the form shown in equation (3)), it does not mean that the 
reference state corresponds exactly to the 0 state. 
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and fixed dimensions along the axis Oz : a x = Cry = a; az = 
o = constant; n = no/a20, thus 

(20t2 + 0 2 - - 3  2 ) ~ O~ztT[Bn 0 Ct402Cn2/] F = vT in a2o + N T  I - ~ - -  + 
e f 

(5) 

(c) free swelling or collapse along the axis Ox and fixed 
dimensions along the axes Oy and Oz: a x = a ; a y  = ol  = 
constant; az = o2 = constant; n = n0/~OlO2, thus: 

Or + 0 2 + 0"~ - 3 2 
F = v T  l n a o l o 2  ) 2 f 

( Bn 0 Cn~ 1 
N T ~ a o l O  2 + ~2o~o~1 

(6) 

The equilibrium values of  a can be obtained by minimization 
of  expressions (4)-(6) .  The concentration n o is given by 
(3). We shall consider only the networks with a small num- 
ber of structural defects such as pendant chains, loops, etc., 
in this case the number of  elastically effective network 
chains, v, is equal to N / m .  

The system of parameters used in the expressions ( 3 ) -  
(6) is not the traditional one ~°, which, in the author's 
opinion, is overburden by the parameters of  the order of 
unity. The form (4) - (6)  of  the free energy is convenient 
for the comparison with the theory of a single macromole- 
cule n, as well as for the complete analysis of  network swel- 
ling and collapse (see below). 

SWELLING OF THE NETWORK 

The equilibrium values o f  the swelling coefficients a can be 
determined by minimization o f  expressions (4) - (6)  with 
respect to t~. Thus, using aF/a~t = 0 we obtain the following 
equations: 

2 ¢~3 Y (a) aS-~ -~-=x (7) 

(b) Ot 4 _ _2 0t 2 _ _ Y  _ x (8) 
f or202 O 

2 y x 
(c) c~3- - t~  - -  - (9) 

f OtO 1 ~ 2  O102 
where 

Bml /2  
x = Bno m = k p3/2d------ ~ 

C 
y - 2Cn~m = 2k2p3d---- ff 

We now consider the swelling of  the network in the good 
solvent. In this case the average monomer concentration 

~: The fact that a 2 ~ 1, whenB = C = 0, is not surprising and is 
connected with the uncertainty in the determination of the refe- 
rence state in this theory. It is important that at B = C = 0, a is of 
order unity (since f i s  of order unity). 

within the network is so small that it is possible to discount 
the terms with the third virial coefficient C in (7) - (9)  (com- 
pare with ref 11). Furthermore, at m >> 1 we have a2 ~ 1, and 
thus in order to obtain an asymptotic swelling law it is pos- 
sible to neglect the second terms on the left-hand side of 
equations (7) - (9)  with respect to the first terms. As a 
result we obtain: 

For (a) the network swells so that 0t 2 ~ x 2 /5  ~ m I/5. 
Comparing this result with Flory's theory ~4, the ratio o f  the 
monomer concentration in the dry network to the monomer 
concentration in the swollen network, given the symbol q 
in the Flory theory, in our notation is proportional to 
a3/no (q ~ a3/no). In our theory, therefore, q ~ m 4/5 while 
in the Flory theory q ~ m 3/5. So the asymptotic swelling 
law for the networks prepared in the presence of diluent is 
different from the corresponding law for the networks cross- 
linked in the dry state where the F1ory theory is valid. 

For (b): the swelling coefficient ct 2 is proportional to 
m 1/4, i.e. q ~ a2o/no ~ m 3/4. When the network is stretched 
along the Oz axis (i.e. when a > 1) the coefficient a 2 
decreases, ct 2 ~ 0 -1/2.  When the network is compressed 
along the Oz axis (i.e. when o < I) the value o f a  z increases. 
At the maximum possible stretching o ~ m 1/2 there is no 
swelling along the axes Ox and Oy. 

For (c): the value o f a  2 is proportional to m I/3, i.e. 
q ~ otalo2/n 0 ~ m 2/3. The stretching of  the network again 
leads to a decrease in swelling, and vice versa: a 2 ~ (OLO2) -2/3 

It should be pointed out that the power dependences 
a 2 ~ m s are valid only in the asymptotic limit m >> 1. If m is 
not large, these dependences must be modified. 

COLLAPSE OF THE NETWORK 

We shall now consider network conformation below the 0 
point. When the temperature is lowered below the 0- 
temperature a single linear polymer macromolecule under- 
goes a collapse n, i.e. a phase transition from the coil to the 
globular state occurs; this transition is first order in the case 
o f  a stiff-chain macromolecule and second order in the case 
of a flexible-chain macromolecule. 

In order to study the behaviour of  a polymer network 
below the 0 temperature we consider the function a2(x) 
given by equations (7)-(9)* with negative values o f x  (since 
at T < 0 B < 0). In all the three cases at y larger than some 
critical value Ycr (v >Ycr)  the plot a2(x) has the form of the 
curve A in Figure 2, and a t y  <Ycr the function ct2(x) is 
non-monotone at x < 0 (curve B in Figure 2) .  Thus, when 
the temperature is lowered below the 0-point in the case 
Y <Ycr the discrete first order phase transition occurs and 
in the casey >Ycr the increase in the average monomer con- 
centration within the network is continuous. From compari- 
son with the case of  a single macromolecule ~ it is clear 
that the first order phase transition a t y  <Ycr must be 
identified with the transition of  the network from the coil 
to the globular state (or collapse): above the transition tem- 
perature the fluctuations of  the monomer concentration 
within the network are o f  order of  the concentration itself, 

* Analogous equations for swelling coefficient can be obtained in 
the case of a single macromolecule, if both swelling and collapse are 
described in terms of the interplay of Fint and Fel (see refs 8, 9: 
the results given are not exact, since for a single macromolecule the 
surface free energy F s is much more important than Fel in the 

11 collapse region ). So the consideration of the collapse in our case 
is almost completely analogous to the corresponding consideration 
in the refs 18, 19. 
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Function c~2(x) at I / >  Ycr (the curve A) and at y < Ycr 

below the transition temperature the fluctuations are small. 
F o r y  >Ycr the tramition from the coil to the globular state 
(collapse) also takes place, but this transition is not dis- 
crete and occurs m" the finite, although narrow tem~eraturel/z :< 
interval (detailed analysis shows that A T / T  ~ m -  ~ 1). 
Since 2xT does not tend to zero at N ~ oo, according to the 
terminology introduced in ref 11 the collapse of  the net- 
work a t y  >3'or is not a phase transition. 

From equations (7) - (9)  we obtain values ofycr  as fol- 
lows: for (a) Vcr = 0.36/f4; for (b)Ycr = 0.30o2/f3; for (c) 
Y cr = o2o22/3)~ 2. Taking into account y = 2k2C/p3d 6 and 
the estimation C ~ d 6, which follows from our definition of  
a monomer (see ref 17:~), it is possible to make the following 
conclusions. 

For (a) the type of the collapse depends basically on the 
degree of  network chain stiffness: for stiff enough chains 
(p ~ 1)y <Ycr  and the collapse is a first order phase transi- 
tion; for flexible chains (p ~ 1 ) y  >Ycr  and the collapse is 
the continuous non-phase transition. The critical value 
Pcr ~ 1, at which the transition becomes discrete, depends 
on the parameter k ~ 1, which describes the details of  the 
network structure, and also on the functionality of  the 
branch po in t s f  ~ 1 (the greaterfbecomes,  the smaller is 
the region of discrete collapse). 

In cases (b) and (c) one more parameter appears - the 
degree of the deformation of  the network sample, o. If 
o > 1 (stretching), the value of Ycr essentially increases (the 
region of discrete collapse becomes much larger) and vice 
versa. At significant stretching the collapse of  the network 
is a first order phase transition independent of  chain stiff- 
hess.  

Substituting the solutions of equations (7) - (9)  in expres- 
sions (4) - (6)  for the free energy and taking into account 
the estimation 

T - O  
B ~ d 3 = d3r 

T 

which is true near the 0-point, it is easy to obtain the tem- 
perature, T c, at which the network undergoes the collapse 
in the casey <Ycr. In all the three cases 

T c 0 
r c -= . . . . . . . .  m 1/2 

0 

neglecting logarithmic factors, i.e. re depends only on m,  but 
is independent of the degree of the stiffness of  the network 
chains p and of the degree of  deformation of the network, 

The temperature dependence of  C is negligible in the narrow 
transition region 
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a. I fy  <Ycr the average monomer concentration within 
the network changes abruptly at the collapse point from its 
coil value n c ~- n O (case a); ne = no/o (case b) or n e ~ nO/OlO2 
(case c)) to its globular value ng (ng ~ m -1/2 ignoring loga- 
rithmic factors in all the three cases). The relative change in 
concentration at the collapse point is (ignoring again loga- 
rithmic factors): 

For (a): 

n g -  nc_ ~ p3/2 

n c 

For (b): 

n g -  n e  ~ p3/2 ° 

1l c 

For (c): 

n g -  n c 
_ ~ Olo2p3/2 

II c 

When the temperature is lowered below the collapse point, 
the average monomer concentration within the network 
changes in accordance with the laws of a globular phase 
ng ~ Ir[ in all three cases 17. 

The calculations in this section are very similar to those 
performed in ref 20, where the related problem of  the phase 
separation of  the network into two phases with different 
polymer concentrations are considered. 

The collapse of a polymer network surrounded by the 
excess of  the solvent (polyacrylamide in the acetone-water  
mixture) was studied experimentally in the recent articleV~). 
It was shown that under some conditions the collapse of  the 
gel is a first order phase transition and under other condi- 
tions the collapse transition is continuous, although it occurs 
in a narrow temperature interval. It was found that the 
character of the collapse depends on the conditions of gel 
preparation and on the composition of  the acetone-water  
mixture. These facts are in agreement with our theory, 
since the conditions of gel preparation affect the parameter 
k (and not the degree of  the chain stiffness p = l/d, as sup- 
posed in ref 7), and the composition of  the acetone-water  
mixture affects the parameter C. Further experimental 
study of  this system - in particular the study of the swel- 
ling of  the gel and the change in its collapse characteristics 
depending on the deformation of  the network, would permit 
verification of  the other conclusions of  this paper§). 
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:~ Ref 7 also contains the theoretical consideration of the collapse 
for cases (a) (the free network). Although it differs in some res- 
pects from our consideration, the final results in ref 7 and in this 

~ aper are in the qualitative agreement. 
When the conclusions of this paper are compared with experi- 

ment we should have in mind that the above results are strictly valid 
if: (i) the networks are prepared in the presence of a large amount 
of diluent; (ii) the networks have a small number of structural 
defects. In practice these requirements can be somewhat contra- 
dictory 4. The results for the networks with the defects of known 
type can be simply obtained along the lines of this paper. 
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